If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6t^2+28t+27=0
a = 6; b = 28; c = +27;
Δ = b2-4ac
Δ = 282-4·6·27
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-2\sqrt{34}}{2*6}=\frac{-28-2\sqrt{34}}{12} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+2\sqrt{34}}{2*6}=\frac{-28+2\sqrt{34}}{12} $
| 3x4=120 | | 80-3x=5x8 | | 4(9x+4)=4x+44 | | 18-3/4x=14 | | 5(2b+3)=90 | | 265=134-y | | 4x^2-31=5 | | h(h-4)=h | | 2/12=a/18 | | 5y+2=5+2 | | 6/10=15/n | | 9/c=27/30 | | 2(4a-2)=3(5=+2a) | | 8=5x–4 | | 16^3x=8 | | 99x=4.5x^2 | | 15/n=6/10 | | 7/9a=9/2 | | (x-1)/(3x)+8x=(x+2)/(x) | | 7x+4=-3-(-12) | | 1/3(6p-24)=18+3p | | 5t12=4t-1 | | t*t+8t-29=0 | | (2/3)x+(1/4)×=(11/x) | | 2/3x+1/4×=11/x | | 6+3(x-9)x=12 | | 15^x=30 | | X-1/x-9+1/x-3=2/x+3 | | 3-2(x-9)=5x | | 3(8-n)+2n=2 | | 4x=32/2-8 | | -4+17=5b-8-4b |